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A modification is given of Luttinger's one-dimensional model of interacting fer- 
mions to incorporate both Fermi surfaces using one physical type of particle. 
The system is solved in the presence of an arbitrary external field, with linear 
response and pair correlation functions readily computed. These constitute an 
explicit realization of a relation associated with the random phase 
approximation. 
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1. I N T R O D U C T I O N  

Analy t ic  so lu t ions  of in terac t ing  many- fe rmion  systems are no to r ious ly  dif- 
ficult to obtain.  One must  no rma l ly  settle for a car ica ture  of the system of 
interest,  in which care has been taken  to retain enough to answer  quest ions 
abou t  some specific points ,  and  these alone. One  ext reme class of systems 
in which progress  can be made  in this fashion is charac ter ized  by part ic le  
in teract ions  due to collective modes  that  g roup  themselves into small  Lie 
a lgebras  (see, e.g., Ref. 1). F o r  one-d imens iona l  systems, one can go much 
further and,  e.g., encompass  ha rd -co re  or  even a-funct ion interact ions.  (2~ 
The fact that  a rb i t r a ry  in te rac t ion  potent ia l s  can also be hand led  in the 
one-d imens iona l  case was first observed  by T o m o n a g a .  (3) This was in the 
context  of a poss ibly  realist ic s i tuat ion,  that  in which changes in fermion 
occupa t ion  are restr ic ted to a small  d is tance from the Fe rmi  surface, so 
that  only  f i rs t -order  changes in kinetic  energy had  to be considered.  
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Luttinger 14) then formalized this model and introduced two electron species 
(of opposite spin, but any dichotomic variable would do) whose changes 
would be localized about the two Fermi levels of a one-dimensional system. 

When Luttinger solved his model with two kinds of particles, each 
particle could interact only with particles of the other type, but not with 
particles of the same type. Later, when Mattis and Lieb (s) solved the model 
correctly, they were able to diagonalize the Hamiltonian even when they let 
all particles interact with each other. They called this choice "natural in 
field theory. ''(6) Implicit was the fact that two particle species were 
necessary to obtain excitations near the two ends of the Fermi sea, _+kv, 
where kv is the Fermi momentum (we will conventionally choose h = 1). 
Nobody, to our knowledge, has tried to reduce these two kinds of fermion 
to one, a task that is imperative prior to a generalization to three 
dimensions, ~71~2 since there the sign in front of kv is meaningless and one 
can go continuously from any point of the Fermi surface to any other. Our 
first objective in the present work is to show how this can be accomplished 
by mixing the two Fermi seas in their overlapping region. The cost will be 
a further modification of the kinetic energy. 

What sort of information can we expect to obtain reliably from such 
models? Since we have not simply approximated the system Hamiltonian, 
it is not clear that any absolute quantitative results are meaningful, 
although qualitative ones--the maintenance of the Fermi surface under 
interaction, for example--may well be. Rather, one might expect 
relationships between observable quantities to be tolerably well represen- 
ted, even though individual quantities may not be. In particular, our 
second objective is to solve completely the reaction of a Fermi fluid to an 
external field, the resulting inhomogeneity manifesting itself in a number of 

quant i t ies .  We seek relationships between such quantities that do not 
depend upon details of the particle kinetic energy, and perhaps not of the 
interaction either. This will allow us the option of introducing artificiality 
into either, and some consequences of exercising this option will be 
examined. 

It is worth pointing out the peculiar role of second quantization--and 
the underlying infinite Fermi sea in these models. The corresponding first- 
quantized models are notably devoid of structure (see Mattis and 
Sutherland ~9) as well as Orfanopoulos (8t) and the problem of relating these 
to realistic systems has proved dauntingly refractory. 

2 In the distorted three-dimensional version, the kinetic energy is built up via eight particle 
labels occupying eight overlapping momen tum regions, which are spliced together. For a 
general discussion see Ref. 8. 
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2. THE O D D - E V E N  VERSION OF THE M O D E L  

The original Hamiltonian of Luttinger,/4) as modified by Mattis and 
Lieb, ~s) took the form of a kinetic one-body part 

H o c ~ * * = (a lea lk - -a2ka2k)k  (2.1) 
k 

and a potential energy two-body part 

1 
Hi = ~  ~ ~(P)[P,( - -P)  + P2(--P)] [P ~(P) + P2(P)] 

(2.2) 
(,L 

v(P) = ~o v(x) e iXp dx, p / (2~/L)  integer 

(which includes interaction self-energy). Imagining H~ to be turned on 
from an H 0 eigenstate in which type 1 particles fill a Fermi sea below kv,  
and type 2 particles a Fermi sea above - k v ,  and using the anticom- 
mutation relations 

a*  { J, ,  ate,  } = {a , , ,  } = 0 
a* 

{ jk ,  a/,k, } = ~ i r a k k  ' 

it was shown that the density components 

(2.3) 

P,(P)=~a, ,a-+pa,k ,  i =  l, 2 (2.4) 
k 

satisfy the commutation relations 

[ p j ( - p ) ,  pj,(p')] = 6i/6pp, ( - 1) i * pL/2x  (2.5) 

where L is the spatial period of the implicit periodic boundary conditions. 
In deriving (2.5), it is important to take systematically the limit as the 
underlying momentum space becomes infinite in domain. 

Restricting our attention to spinless particles, we would now like to 
have just one type of particle, perhaps with two labels, that satisfies the 
following requirements: (i) in the absence of interaction, all levels between 
- k v  and kv should be filled, (ii) interactions should provoke transitions 
across both k v and --kF, (iii) particles with the same or different labels 
cannot occupy the same level, but they should interact normally with each 
other. Here is how this can be done. 

We imagine that the underlying system we are trying to model has an 
even number N of particles and we provisionally expand our spatial 
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domain to the line from - L  to L. On this domain, the wave numbers are 
integer multiples of 

ko = ~z/L (2.6) 

The two basic Fermi surface levels must now differ by ko, i.e., they may be 
taken as kv = 1Nko and - ( k v - k o ) .  The type 1 particles in the interac- 
tionless state are now taken as filling every other level from kv down: kv, 
k v -  2k0, k v -  4ko ..... - 0 %  whereas the type 2 particles fill alternate levels 
from - (kv - ko) on up: - (k v - ko), - (kv - 3k0), - (kv - 5ko),..., oo. With 
interaction, the remaining levels kv + 2ko, kv + 4ko,... become available to 
type 1, while - ( k v + k o ) ,  - (kv+3ko) , . . .  can be partially occupied by 
type 2. Note that type 1 occupies only even levels and type 1 odd, or vice 
versa, depending upon whether N/2 is even or odd. For definiteness, we 
suppose the former to be true, which we now enforce by the convention 
that 

alk = 0 unles k/ko = 0 (mod 2) 
(2.7) 

azk = 0 unless k/ko = 1 (mod 2) 

and similarly for ai,.* The commutation relations 

{a/k, a.~, } = @6kk' (2.8) 

are of course now satisfied, with the @ factor redundant, since at common 
k, either ajk or a~'k must vanish unless j = j'. 

To construct our model using (2.6)-(2.8), we first move all particles in 
the region ( - L ,  0) by L so that they fall in the region (0, L). This will 
leave the interaction on the space ( - L ,  L) unchanged if it is of period L. In 
other words, we have 

1 
H, --~--~ Z fi(P) P ( - P )  P(P) (2.9) 

p/ko e v e n  

where ~(p) is the Fourier transform on (0, L). Since only even p are 
required, 

P(P)=Pl (P)+P2(P)  

= ~ a*k+palk+ ~ a2k* +pa2k (2.10) 
k/ko e v e n  k/ko o d d  

If the Fermi sea for type 1 at k =  - o o  is filled, and that for type 2 at 
k = oo, then these density components are readily found to satisfy 

[Pl(--P) ,  Pl(P)]  = [P2(P), P2(--P)] = pL/27r (2.1 1) 

as the only nonvanishing commutators. 
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For the kinetic energy, we, however, choose the full 

H 0 = Hol - H 0 2  

=c ~ ka*~alk--c ~ ka2*ka2k (2.12) 
k/ko even k/ko odd 

associated with the state of type 1 occupation below kv, type 2 above 
- ( k v - - k o )  in the absence of H 1. Since it is readily seen that 

[Ho, pi(_+p)] = •  1} i-1 cpi(+_p) (2.13) 

H0 has precisely the same commutat ion relations with the pi(p) as 

27z 

r o = c  T 
p > 0  

p/ko even 

[Pl(P)P,( -P)+P2(-P)P2(P)]  (2.14) 

We observe that the conditions preceding (2.6) are now satisfied, and that 
indeed the transitions in the vicinity of the Fermi surfaces are always by 
multiples of 2ko = 2~z/L. The interpretation of H o on the space (0, L) is, 
however, not very intuitive. 

The solution of H = H o + H~ now follows as in Mattis and Lieb. We 
write 

H =  T o+  H1 + ( H o -  To) (2.15) 

where H o -  T o commutes with all p~(p), and then carry out the unitary 
transformation generated by 

Since 

.2~ p ~ O  

S=,---~ ~ O(P)/PP,(P) P2(-P) (2116) 
p/k 0 even 

eiSpi(p)e iS=pi(p)coshr (2.17) 

it is readily verified that if ~b is chosen to satisfy 

then 

eiSHe - is _ 2•c 
L 

tanh 2~b(p) = -v(p)/[2cn + v(p)]  

p > 0  

2 ( e - 2 r  - 1 ) [ p ' ( P ) P l ( - - P ) + P 2 ( - - P ) P 2 ( P ) ]  
p/ko even 

+ H o +  cp 1 - 1  +  (Olp(Ot 2 
p/ko even 

(2.18) 

(2.19) 

822/46/3-4-7 
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Observing that P l ( - P )  and P2(P) (for p > 0) function, to within a constant, 
as boson annihilators, and that H0 commutes with the rest of the 
Hamiltonian of (2.19), it follows that if ~b(p)> 0, the interaction shift in 
ground-state energy is simply 

E( dE= ~ cp 1 + - 1 + ~(O)p(O) 2 (2.20) 
p/ko ev en  7~C / 

p(0) can be chosen arbitrarily, but is fixed in a grand ensemble, in which 
H - g p ( 0 )  is minimized. 

3. E X T E R N A L  FIELD 

Our new linear energy model (LEM) seems perhaps distressingly 
devoid of structure when taken from the point of view of the ground-state 
energy shift (2.20). This situation changes when we apply an external field, 
periodic on [0, L],  

1 
H2= Z ~ ~( -p)p(p)  (3.1) 

p/ko even  

The solution for Hu = H +  H 2 is not appreciably more difficult than 
that for H alone. We again apply the decoupling transformation generated 
by S of (2.16), obtaining instead 

2~c p>O 
dSH, e is_ ~ e 24(P)[pl(p) p ~ ( - p ) + p 2 ( - p )  P2(P)] 

L p/ko even  

1 p>o 
+-s ~ e~(P'{F~(-P)[P,(P)+P2(P)] 

p/k 0 ev en  

+ g f f p ) [ p ~ ( - p ) + p z ( - p ) ] } + H o - T o + A E  (3.2) 

Another unitary transformation W now suffices to eliminate the linear 
terms in (3.2), namely 

e3~b(P)  

pi(p)-*pi(p)--z---gt(p)  for p # 0  (3.3) 
ZTZC 

obviously of the form Wpi(p ) W 1. If e is2= We is, then 

2roe p>O 
ei&H~ e i S 2 - -  2 (e 2O(p)--l)[pl(p)pl(--p)+p2(--p)p2(p)] 

L p/ko even  

1 
p>o 2~cL1 e4~(p)fft(p) fft(_p) +_s ~t(O) p(O ) + H o + d E -  

p/ko even  

(3.4) 
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Now of course, in the ground state, 

p > 0  e4,p(p) 1 
A E , = A E -  ~ 2~c------s163 (3.5) 

p/k  0 even 

What are the obvious consequences of (3.5)? To start, we can obtain 
the nonuniform density expectation by means of functional (in x space) or 
partial (in k space) differentiation, i.e., since 

p(p) = L OH2/c)~(-p) = L c?(H + H2)/0t~(-p) (3.6) 

except at p = 0, where p(p) is still arbitrary, we have 

co4O(Pl 
n ( p ) =  (p(p) ) -  27rc Ft(p) (3.7) 

It then follows that the linear response function has the simple form 

c?n(p) e 4+(pl 
8~(q)-  2~zc 6p'q (3.8) 

here independent of external field. 
The pair correlation is another characteristic quantity; it may be 

defined by 

F(p, q) = ( l /N) ( [ p ( p )  - n(p)]  [p(q) - n(q)] ) (3.9) 

Now we need the full expression (3.4), together with the fully transformed 

co4~(P) 
e'S2p~(p) e-~S2 = p~(p) cosh ~b(p) + P3 -~(P) sinh ~b(p) - ~ ~(p) (3.10) 

so that 

e*S2[p,(p) - ni(p)] e ,s2 = p~(p) cosh ~b(p) + P3-i(P) sinh ~b(p) (3.11) 

as well as 
eiS2[p(p)- n(p)]  e "&= [p , (p)  + Pz(P)] eC'{P) (3.12) 

There are four possibilities to consider. First, we need p > 0, q > 0: 

[P,(P)  + P2(P)] ecS(P)[PJ ( - q )  + P2( - q ) ]  e~(U) 

[ Lp ]eO(p,++{u ) 

+ [p l(p) p 2 ( - q )  + p2(v) p l ( - q ) ]  e ~p) + ~<~ 
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and so find at once 

LIP[ e2~(p)(~ p,q F(p, q ) = - ~ - ~  (3.13) 

The other three possibilities are carried out similarly, and in fact (3.13), 
with the absolute value as inserted, is valid for all. 

The model relation implied by (3.8) and (3.13) is obvious. It is that 

~n(p)_ 2~ n2F(p, q)2 (3.14) 
~?~( q ) cpq 

where n = NIL is the mean density of the underlying system. But what is c? 
According to (2.12), the type 1 kinetic energy, normally p2/2m, has been 
represented by cp + const. In the vicinity of kv-= 1Nrc/L, we have 

p2/2m = kZ /2m + (kv/m)(p - kv) + ... 

leading to the identification c = kv/m or 

c = mz/2m (3.15) 

thereby converting (3.14) to 

On(p____) _ 4mn F(p, q)2 (3.16) 
O~(q) pq 

This is precisely the relation corresponding to the random phase or collec- 
tive coordinate approximation to fluid structure, (1~ which does not corres- 
pond to a well-defined Hamiltonian. We see, then, that despite the blatant 
artificiality of the LEM-- the  reader will surely be aware of the strange 
external field independence and consequent diagonality of the separate 
relations (3.8) and (3.13)--it does give a model justification for the simple 
(3.16). Perhaps it is the general structure of (2.9), (2.12)--the first-quan- 
tized kinetic energy does indeed generate a small Lie algebra--rather than 
their specific form that leads to (3.16), but this is far from obvious. 

4. C O N C L U S I O N  

We have shown that it is possible to set up a version of the solvable 
one-dimensional fermion model of Tomonaga, Luttinger, Mattis, and Lieb, 
in which the reference system has a full Fermi surface, and in the context of 
only one physical type of particle. The cost is the requirement of a further 
modified kinetic energy, corresponding to the folding of the physical region 
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I - - L ,  L ]  on to  [0, L ] .  However ,  it is still easy to relate this to the under-  
lying N e w t o n i a n  kinet ic  energy, and  a previous  a p p r o x i m a t e  re la t ionship  

between l inear  response and pair  cor re la t ion  now emerges as an exact  
result. Impor t an t ly ,  the technique can be general ized to three 
dimensions ,  (7'8) where an ex tended  o d d - e v e n  version is absolu te ly  crucial  in 

avoid ing  a pro l i fe ra t ion  of fermion species. This will be repor ted  in a future 

publ icat ion.  

A C K N O W L E D G M E N T S  

We would  like to thank  Prof. G. O. Wi l l iams  for interest ing dis- 
cussions at the ear ly stages of this work. This work  was suppor t ed  in par t  
by N S F  grant  C H E  830 5238 and  D O E  cont rac t  DE-AC02-76ER03077.  

R E F E R E N C E S  

1. R. J. Elliott, in Selected Topics in Nuclear Theory (IAEA, Vienna, 1963). 
2. J. B. McGuire, J. Math. Phys. 7:123 (1963). 
3. S. Tomonaga, Prog. Theor. Phys. (Kyoto) $:544 (1950). 
4. J. M. Luttinger, J. Math. Phys. 4:1154 (1963). 
5. D. C. Mattis and E. H. Lieb, J. Math. Phys. 6:304 (1965). 
6. E. H. Lieb and D. C. Mattis, Mathematical Physics in One Dimension (Academic Press, 

New York, 1966). 
7. B. A. Orfanopoulos and J. K. Percus, to be published. 
8. B. A. Orfanopoulos, Ph.D. Thesis, New York University, New York (1986). 
9. D. Mattis and B. Sutherland, J. Math. Phys. 22:1962 (1981). 

10. J. K. Percus, in The Liquid State of Matter, E. W. Montroll and J. L. Lebowitz, eds. 
(North-Holland, Amsterdam, 1982), p. 77. 


